Location of Earth


Knowledge of the location of Earth has been shaped by 400 years of telescopic observations, and has expanded radically since the start of the 20th century. Initially, Earth was believed to be the center of the Universe,
which consisted only of those planets visible with the naked eye and an outlying sphere of fixed stars. After the acceptance of the heliocentric model in the 17th century, observations by William Herschel and others showed that the Sun lay within a vast, disc-shaped galaxy of stars. By the 20th century, observations of spiral nebulae revealed that the Milky Way galaxy was one of billions in an expanding universe, grouped into clusters and superclusters. By the end of the 20th century, the overall structure of the visible universe was becoming clearer, with superclusters forming into a vast web of filaments and voids. Superclusters, filaments and voids are the largest coherent structures in the Universe that we can observe. At still larger scales the Universe becomes homogeneous, meaning that all its parts have on average the same density, composition and structure.
Since there is believed to be no "center" or "edge" of the Universe, there is no particular reference point with which to plot the overall location of the Earth in the universe. Because the observable universe is defined as that region of the Universe visible to terrestrial observers, Earth is, because of the constancy of the speed of light, the center of Earth's observable universe. Reference can be made to the Earth's position with respect to specific structures, which exist at various scales. It is still undetermined whether the Universe is infinite. There have been numerous hypotheses that the known universe may be only one such example within a higher multiverse; however, no direct evidence of any sort of multiverse has been observed, and some have argued that the hypothesis is not falsifiable.

Details

Earth is the third planet from the Sun with an approximate distance of, and is traveling nearly through outer space.
.
FeatureDiameterNotesSources
Earth12,756.2 km
Measurement comprises just the solid part of the Earth; there is no agreed upper boundary for Earth's atmosphere.
The geocorona, a layer of UV-luminescent hydrogen atoms, lies at 100,000 km.
The Kármán line, defined as the boundary of space for astronautics, lies at 100 km.
Orbit of the Moon768,210 kmThe average diameter of the orbit of the Moon relative to the Earth.
Geospace6,363,000–12,663,000 km
The space dominated by Earth's magnetic field and its magnetotail, shaped by the solar wind.
Earth's orbit299.2 million km
2 AU
The average diameter of the orbit of the Earth relative to the Sun.
Encompasses the Sun, Mercury and Venus.
Inner Solar System~6.54 AUEncompasses the Sun, the inner planets and the asteroid belt.
Cited distance is the 2:1 resonance with Jupiter, which marks the outer limit of the asteroid belt.
Outer Solar System60.14 AUIncludes the outer planets.
Cited distance is the orbital diameter of Neptune.
Kuiper belt~96 AUBelt of icy objects surrounding the outer Solar System. Encompasses the dwarf planets Pluto, Haumea and Makemake.
Cited distance is the 2:1 resonance with Neptune, generally regarded as the inner edge of the main Kuiper belt.
Heliosphere160 AUMaximum extent of the solar wind and the interplanetary medium.
Scattered disc195.3 AURegion of sparsely scattered icy objects surrounding the Kuiper belt. Encompasses the dwarf planet Eris.
Cited distance is derived by doubling the aphelion of Eris, the farthest known scattered disc object.
As of now, Eris's aphelion marks the farthest known point in the scattered disc.
Oort cloud100,000–200,000 AU
0.613–1.23 pc
Spherical shell of over a trillion comets. Existence is currently hypothetical, but inferred from the orbits of long-period comets.
Solar System1.23 pcThe Sun and its planetary system. Cited diameter is that of the Sun's Hill sphere; the region of its gravitational influence.
Local Interstellar Cloud9.2 pcInterstellar cloud of gas through which the Sun and a number of other stars are currently travelling.
Local Bubble2.82–250 pcCavity in the interstellar medium in which the Sun and a number of other stars are currently travelling.
Caused by a past supernova.
Gould Belt1,000 pcRing of young stars through which the Sun is currently travelling.
Orion Arm3000 pc
The spiral arm of the Milky Way Galaxy through which the Sun is currently travelling.
Orbit of the Solar System17,200 pcThe average diameter of the orbit of the Solar System relative to the Galactic Center.
The Sun's orbital radius is roughly 8,600 parsecs, or slightly over half way to the galactic edge.
One orbital period of the Solar System lasts between 225 and 250 million years.
Milky Way Galaxy30,000 pcOur home galaxy, composed of 200 billion to 400 billion stars and filled with the interstellar medium.
Milky Way subgroup840,500 pcThe Milky Way and those satellite dwarf galaxies gravitationally bound to it.
Examples include the Sagittarius Dwarf, the Ursa Minor Dwarf and the Canis Major Dwarf.
Cited distance is the orbital diameter of the Leo T Dwarf galaxy, the most distant galaxy in the Milky Way subgroup.
Local Group3 MpcGroup of at least 54 galaxies of which the Milky Way is a part.
Dominated by Andromeda, the Milky Way and Triangulum; the remainder are dwarf galaxies.
Local Sheet7 MpcGroup of galaxies including the Local Group moving at the same relative velocity towards the Virgo Cluster and away from the Local Void.
Virgo Supercluster30 MpcThe supercluster of which the Local Group is a part.
It comprises roughly 100 galaxy groups and clusters, centred on the Virgo Cluster.
The Local Group is located on the outer edge of the Virgo Supercluster.
Laniakea Supercluster160 MpcA group connected with the superclusters of which the Local Group is a part.
Comprises roughly 300 to 500 galaxy groups and clusters, centred on the Great Attractor in the Hydra-Centaurus Supercluster.
Observable Universe28,500 MpcAt least 2 trillion galaxies in the observable universe, arranged in millions of superclusters, galactic filaments, and voids, creating a foam-like superstructure.
UniverseMinimum 28,500 Mpc
Beyond the observable universe lie the unobservable regions from which no light has reached the Earth yet.
No information is available, as light is the fastest travelling medium of information.
However, uniformitarianism argues that the Universe is likely to contain more galaxies in the same foam-like superstructure.